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A new class of analytic solutions of the two-state problem 

C E Carroll and F T Hioe 
Department of Physics, St John Fisher College, Rochester, NY 14618, USA 

Received 7 November 1985 

Abstract. A new class of solutions of the time-dependent Schrodinger equation is found 
for the two-state problem often encountered in quantum optics, magnetic resonance and 
atomic collisions. We use the Riemann-Papperitz differential equation to find exact 
solutions in terms of hypergeometric functions. We consider only cases in which the final 
occupation probabilities are elementary functions of the parameters of the model. 

1. Introduction 

Solutions of the time-dependent Schrodinger equation are important in quantum 
dynamics. In the case of only two quantum states, many analytic solutions of the 
time-dependent Schrodinger equation have been found [ 1-15] and applied to various 
physical problems. The early work of Rosen and Zener [ 13 on the double Stern-Gerlach 
experiment [ 161 treats an interesting simple case by using hypergeometric functions 
and this calculation has been much generalised [2-61. In this paper, the Riemann- 
Papperitz differential equation is used to find further solutions in terms of hyper- 
geometric functions. These calculations can be applied to the two-state models used 
in quantum optics [ 171, magnetic resonance [ 181 and atomic collisions [ 191. 

Since there are only two quantum states, the Schrodinger equation has the form 

where t is the time, A, and A2 are the complex components of the wavefunction and 
HI,,. . , , HZ2 are matrix elements of the Hamiltonian operator. In general, all these 
components and matrix elements depend on t. The occupation probabilities of the 
two states are the absolute squares of A, and Al. Rosen and Zener [l] used a simple 
transformation to make diagonal elements of the Hamiltonian matrix equal to zero. 
This transformation does not change the relation between the two occupation prob- 
abilities and the two components of the wavefunction. After use of this transformation, 
the Hamiltonian matrix contains only two arbitrary functions of t ;  it is characterised 
by the magnitude and phase of one of the off-diagonal elements. 

When the two-state model is applied to quantum optics or magnetic resonance, the 
applied oscillating electric or magnetic field is treated as a classical external field 
appearing in the equations of motion for the two-state atom or molecule. The three 
Bloch equations [20] can be used as these equations of motion. We shall ignore the 
damping terms in the Bloch equations and pay attention to time dependence of the 
external oscillating field. The undamped Bloch equations contain two arbitrary func- 
tions of t, namely the amplitude and detuning of the applied oscillating field. These 
undamped Bloch equations are equivalent to the Schrodinger equation for the two-state 
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system [21]. But we must emphasise that the undamped Bloch equations have the 
properties here claimed for them only if we invoke the rotating-wave approximation 
[ 17,20,21] and make the transformation to the rotating frame of reference [ 181. The 
errors resulting from this approximation have been studied in detail [22]; they are 
often negligible and they vanish if the optical two-state system is driven by circularly 
polarised light propagating along an external magnetic field or if the magnetic two-state 
system is driven by a gyrating magnetic field. In ( 1 )  or the Bloch equations, high- 
frequency terms are eliminated by the rotating-wave approximation and the transforma- 
tion to the rotating frame. Since this approximation and transformation do not change 
the form of ( l ) ,  we shall not consider them further. 

In the simplest form of the two-state problem, the applied oscillating field has 
constant amplitude and constant detuning. The solution of the Schrodinger equation 
for this case, obtained by Rabi [15], involves only elementary functions. A simple 
generalisation of this solution has been published [6]. The new class of solutions 
obtained in this paper can be regarded as a further generalisation of the Rabi solution. 

The two-state model has often been applied to avoided crossing of two energy 
levels in a diatomic molecule or in an atomic collision. This application, which is 
mentioned by Rosen and Zener [l] ,  led Landau [7] and Zener [8] to formulate and 
solve a particular form of the time-dependent two-state problem. For its analytic 
solution by means of confluent hypergeometric functions, see Zener [8] and Wannier 
[9]. Related two-state problems have been treated by Nikitin [lo], Demkov [ l l ] ,  
Kaplan [12], Crothers 1131 and Lee and George [14]. A generalisation of the Lacdau- 
Zener model to three states has recently been treated [23]. In this paper, we do not 
consider analytic solutions of this sort and do not attempt to list all the cases of the 
two-state problem that can be solved analytically. The following results are all obtained 
by the use of hypergeometric functions. 

The two-state problem, in its general form, contains two arbitrary functions of t, 
corresponding to the arbitrary amplitude and detuning of the applied oscillating field. 
The solution of this general problem presumably cannot be written in explicit form. 
We shall find two classes of two-state models with useful solutions in terms of 
hypergeometric functions. The two classes of solutions correspond to the presence 
and absence of complex singular points in the Riemann-Papperitz differential equation. 
In either case, we obtain a solution containing one arbitrary function of t and two 
parameters that can be adjusted to vary the other function of t .  When applying these 
two solutions to the two-state model driven by an oscillating electric or magnetic field, 
we may interpret the arbitrary function of t as the amplitude of the applied field and 
the function containing adjustable parameters as the detuning of the applied field; an 
alternative interpretation is mentioned below. Integration of the arbitrary amplitude 
over all times t gives the dimensionless area [24] of the pulse applied to the two-state 
system. We consider only pulses with non-negative amplitude and finite area. Further- 
more, we assume that the two-state system starts out in one of its states, say the ground 
state, at the beginning of the experiment; we interpret this beginning as the limit as 
t + --oo. The final occupation probabilities of the two states are the limits of the two 
occupation probabilities as t -+ +CO. We consider only cases in which the final occupa- 
tion probabilities are elementary functions of the parameters characterising the applied 
pulse. This restriction, and the restriction to finite area, lead to the two classes of 
solutions in terms of hypergeometric functions. Complex singular points in the 
Riemann-Papperitz equation lead to the new class of solutions. If there are no complex 
singular points, we are led to the old class of solutions, which is described in earlier 
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papers that use hypergeometric functions [l-61. Some further details about the old 
class of solutions are given below. Also, some special cases that belong to both classes 
are described below. 

An alternative approach to the two-state model driven by an applied oscillating 
field is to assume constant detuning and use the adjustable parameters to vary the 
pulse shape, meaning the time dependence of the amplitude. This approach is used 
by Bambini and Berman [2] and we can choose our arbitrary function so that our 
solution agrees with theirs (see also the calculations of Bambini and Lindberg [3]). 
The assumption of constant detuning seems unnecessarily restrictive. We expect uses 
for our solutions of the two-state problem, with time-dependent amplitude and detun- 
ing, to appear in various places. 

In these solutions, the pulse amplitude is an arbitrary function of t. We shall treat 
explicitly only functions that appear in an ordinary table of indefinite integrals. This 
restriction leads to quite explicit formulae for the detuning as a function of t, while 
giving us a great variety of time-dependent pulses. 

Before presenting our results as explicit formulae, we write out the undamped 
Bloch equations and the corresponding Schrodinger equation in § 2. The relevant 
properties of hypergeometric functions are described in § 3. The two classes of solutions 
are specified precisely in § 4 and the final occupation probabilities are given. The 
solutions of the Schrodinger equation are written explicitly in appendix 2. The overlap 
of the two classes and the solution of Bambini and Berman are treated in § 5 .  In 0 6, 
seven specific forms of the time-dependent pulse amplitude are used, making our 
results quite explicit. 

2. Equations of motion 

The Schrodinger equation (1) will be transformed into a simpler form in this section, 
following Rosen and Zener [l]. The simpler form will be related to the undamped 
Bloch equations and separated into two uncoupled second-order differential equations. 

We assume that the Hamiltonian operator is Hermitian. This implies that the 2 x 2 
matrix appearing in (1) is Hermitian, so that Hll and H,, are real functions of t. The 
transformation that makes the diagonal matrix elements vanish is 

a ,  = A, exp( i 1' Hll dr) 

and 

a, = A, exp( i 1' H2, dt)  

Here, we have set h = 1 and introduced a, and a,, the two components of the new 
wavefunction. The time-dependent occupation probabilities for the two states are 
I a, l 2  = 1 A, 1' and I a, l 2  = I A2 1'. The transformed Schrodinger equation is 

i-(  d a1 ) = (  0 -in( t )  e-iB) ( ;I) 
d t  a, -+a( t )  e iB 0 

where 
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and 

a( t )  e-iB = -2HI2 exp 

We assume that a(?), which is proportional to the amplitude of the applied oscillating 
field, is a non-negative function of f. Thus, we do not consider the 0 7  pulse [25], 
which involves sudden changes in the phase of the electric field. 

The time-dependent detuning is dB/dt. Both a(t) and dB/dt  appear in 

C - 
d (3) 

the undamped Bloch equations. Here, U, U, w are the three components of the 
pseudopolarisation in quantum optics or of the magnetisation in magnetic resonance. 
They are the components in the rotating frame [18], because we have used the 
rotating-wave approximation and the associated transformation. The difference 
between the two occupation probabilities is 

w = I a2I2- I a, (4) 

U = a , a T e i B + c c  U = -ia,a: e i B + c c .  (5) 

and the other components of the pseudopolarisation or magnetisation are 

One can use these transformation formulae to verify that (2) and (3)  are equivalent 
forms of the equation of motion. 

In the application to a two-level atom driven by a laser beam, a( r )  is the so-called 
Rabi frequency. It is equal to 2dE, where d is the transition dipole moment and E is 
the amplitude of the optical frequency electric field; recall that h = 1. We write 

a( t )  = dA/dt  ( 6 )  
where A is the dimensionless pulse area [24] up to time t. The total area of the pulse 
is 

If dB/dt  vanishes identically, then A is the tipping angle of the pseudopolarisation 
or magnetisation and one can write the solution of (3) in terms of sin A and cos A. 
In general, a solution of (3) must take account of effects of both dA/dt  and dB/dt. 
The symmetry operation that interchanges dA/dt  and dB/dt  will not be used in this 
paper. We assume that (7), the total area, is finite; no such condition is applied to dB/dt. 

A change of independent variable, which introduces an arbitrary function, will 
greatly increase the generality of our solutions. Let z be the new independent variable. 
It is real when t is real and dz/dt  is non-negative when t is real. Using ( 6 ) ,  we rewrite 
(2) as 

d a,  0 -f(dA/dz) e-iB)( 2) 
-f(dA/dz) e iB 0 

i - (  dz a, )= (  
We shall choose the functions A(z) and B(z) so that a ,  and a2 can be written in terms 
of hypergeometric functions. The relation between z and r will not be specified until 
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we come to the constant-detuning solution of Bambini and Berman and the specific 
examples in 0 6. Elimination of a2 and a ,  gives 

dA da,  1 dA -+ - iB-In- -+- - a,=O “6,“: [:z( dz)]  dz 4 ( d z )  

and 

dA da2 1 dA 
dz)] dz 4 ( d i )  

-+ - -iB-In- -+- - a2=0.  ::’ [ t z (  ’ 

Let (dA/dz)2 and dB/dz be rational functions of z. This condition and some other 
conditions will allow solution of (9), by methods outlined in the following section. 

3. Hypergeometric functions 

The Riemann-Papperitz differential equation is shown in this section. We shall use 
this equation, whose solutions can all be written in terms of hypergeometric functions, 
and some of the relations between hypergeometric functions and gamma functions. 
The gamma functions are needed as a step towards the expression of the final occupation 
probabilities as elementary functions. 

The hypergeometric function, F (  a, b; c ;  x) ,  satisfies 

~ ( l  -x )  d2F/dX2+[c - ( U  + b+  l ) ~ ]  dF /dx  - abF=O (10) 

the differential equation given by Gauss [26, p 207ff 1. An important contribution to 
the subject was published by Riemann [27] in 1857, and the relevant differential 
equation 

d2y 1 - a - a ‘  1-p-p‘ 1-7-y’  dy -+( dz2 z - a  z -b  + z -c  )z + 
1 ( z - a  (z -  a)(z - b)(z - c) 

aa ’ ( a  - b)(a  - c)  + 

pp’(b - c)(b - a )  yy‘(c - a ) (  c - b) + z - b  + z - c  ) Y = O  

was later written explicitly by Papperitz [28]. The three singular points of this equation 
are a, b and c; they must be distinct. The corresponding exponents are a, a’, p, p’ ,  
y and y’. All nine of these parameters are complex, in general, but one must have 
(Y + a’+ p + p’+  y + y’ = 1. The general solution of (1 1) can be written in terms of 
hypergeometric functions, but ( 11) suggests more uses of hypergeometric functions 
than (10) does. 

We shall require (9a)  and (9b) to have the form of (11). The numerous complex 
parameters in (11) will lead to three adjustable parameters in (6) and dB/dt, the 
amplitude and detuning functions. We assume that (dA/dz)2 is a rational function. 
Then (9) shows that zeros of this function are singular points of the differential 
equations. On the other hand, study of (1 1) shows that (dA/dz)’ cannot vanish at a 
singular point. Hence, (dA/dz)-2 must be a polynomial in z. Comparison of (9) and 
(11) shows that it is a polynomial of degree four, unless one of the singular points is 
at infinity. Indeed, a, b, c need not all be finite and it is convenient to make one of 
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them infinite. No solutions of the two-state problem are lost by doing this, because 
the relation between z and t is arbitrary. Assuming that one of the singular points is 
at infinity, (dA/dz)-* is a polynomial of degree two, three or four; its only zeros are 
the two finite singular points. 

Since dA/dt and z are real when t is real, (dA/dz)’ must be real when z is real; 
similarly, dB/dz is real when z is real. Either a, b, c are real constants or two of them 
are complex conjugates and the third is real. Although the point at infinity is both 
real and complex, it is nominally real in this paragraph and we shall call the two 
possibilities the cases of real and complex singular points. They are treated separately 
in the following section. 

The initial condition for (2) is that one of the two states is occupied with unit 
probability at early times. We assume that 1 a,  1 + 1 and a2 + 0 as t + - cc. We have 
mentioned our requirement that the final occupation probabilities be given by simple 
formulae. This requirement and the initial condition amount to a requirement that 
each hypergeometric function can be evaluated in terms of gamma functions, or set 
equal to unity, in the two limits t - ,  *t. The alternative possibility is that the hyper- 
geometric functions reduce to elementary functions for all t ,  but this alternative is 
unlikely to lead to new solutions of ( 2 ) .  

unity. The Gaussian formula [26, p 1471 
The function F (a ,  b;  c; x) is defined by 

is valid whenever the series converges at 

a power series, and its value at x = 0 is 

(12) 

x =  1. The other evaluations r291 of - - -  
F (a,  b; c; x)  in terms of gamma functions are valid when x = - 1 or f or - 4  or . . . , 
provided that a, b, c satisfy certain conditions. We consider use of these formulae in 
appendix 1. None of them is actually useful, given our initial conditions and our 
requirement that ( 7 )  is finite. Since x = 0 and x = 1, which are singular points of ( lo),  
correspond to two of the singular points of ( l l ) ,  we are saying that z( t )  must move 
from one singular point of (11) to another, or back to the same singular point, as t 
increases from - a3 to +CO. 

If the two finite singular points of ( 9 )  are not real, we may use a linear transformation 
of the variable called z to put them at * i. The form of (11) is unchanged by a linear 
transformation. Using the condition that (7) is finite, we are led to 

dA/dz = (constant)/(z*+ 1). 
If the possibility considered in appendix 1 is not used, z increases from --a3 to +-a3 

as t increases from -t to + W .  

If the two finite singular points of ( 9 )  are real, we may assume that z ( t )  remains 
finite as t-, *a. Transformations such as z-, az/(z - a )  can be used to make z( t )  
finite without altering the form of (1 1). Furthermore, we may use a linear transformation 
to put the three singular points at 0, 1 and CO. Since the possibilities considered in 
appendix 1 are not usable, z must increase from 0 to 1 as t increases from --CO to 
+CO. The condition that ( 7 )  is finite then gives 

dA/dz = (constant)[z(l- z)]-”’. 
In this section, we have combined our two assumptions with properties of the 

hypergeometric function and started to find specific forms for dA/dz and dB/dz, the 
functions that appear in (9). To justify our use of formula (12) only, more recent 
formulae [29 ]  are considered in appendix 1. 
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4. Solution for final occupation probabilities 

The requirements of finite area and of simple formulae for the final occupation 
probabilities imply that there are two classes of solutions of (2), (3) and (8) in terms 
of hypergeometric functions. The two classes correspond to real and complex singular 
points in (9) and (11). The amplitude and detuning functions, n(t) and dB/dt, and 
the resulting final occupation probabilities are written out in this section. Explicit 
solutions of (8) are given in appendix 2. The cases that belong to both classes and 

lthe constant-detuning solution of Bambini and Berman [2] will be shown in § 5 .  
The new class of solutions is obtained by putting the singular points of (9) and 

(11) at *i and CO; z( t )  moves along the real axis from -CO to +CO as t increases. The 
old class of solutions is obtained by putting the singular points of (9) and (11) at 0, 
1 and CO; z( t )  moves along the real axis from 0 to 1 as t increases. As t increases from 
- CO to + CO, z( t )  moves from a singular point back to the same singular point or from 
one singular point to another. The alternative is another way of stating the distinction 
between the old and new classes of solution. 

The final occupation probabilities are the limits of 1 a ,  1' and I a, l 2  as t + +a, and 
their difference is the limit of w, according to (4). The limits of U and U as t +  +a 
fail to exist in many cases, because B(z) does not approach a limit; see (5). If these 
limits of U and U do exist, they are given in appendix 2. Our previous papers [5,6] 
did not give limits of U and U. 

4.1. Complex singular points 

The new class of solutions is obtained by keeping the finite singular points of (9) and 
(11) off the real axis. Let 

n(t)  = d A / d t = ( a / r r ) ( z 2 + l ) - ' ( d z / d t )  (13a) 

and 

~ ( z )  = ( p / . l r )  tan-'(z)+(y/z.rr) ln(z2+1). (13b)  

Here, a satisfies (7); p and y are the arbitrary parameters in 

dB/dt  = C ' ( p  + y r ) ( z 2 +  l)- ' (dz/dt)  ( 1 3 ~ )  

the detuning function. The parameters of the pulse, a, p and y, should not be confused 
with the parameters of Riemann and Papperitz, nor with the parameters CY and p of 
Bambini and Berman. The generalisation [6] of the Rabi solution [15] is obtained by 
setting y = 0, which kills the singularity at z = CO and allows the solution of (8) in terms 
of elementary functions. The other simplified case, obtained by setting p =0, is 
considered in § 5. In general, we find that 

(14a) I a,12+[2 cosh(y) cos(2m) cos(2m)-cos2(2.rrr) -cos2(2m)]/sinh2(y) 

and 

la212+ [sinh2(y) - 2  cosh(?) cos(2m) cos(2m) 

+ cos2(2m) + cos2(2m)]/sinh2( y )  
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If /3 = 0 or y = 0, the new class of solutions of the two-state problem reduces to 
previously known solutions. We have mentioned that, if y = 0, the generalisation [6] 
of Rabi’s solution [15] is obtained. On the other hand, let 9 = 0 in (13). This gives 
solutions that are also obtained by setting /3 + 2 y = 0 in (16). If /3 = 0, (13b) becomes 

Here, and in (13a), let y +  - 2 y  and z+(z-$)  [ z ( ~ - z ) ] - ” ~ .  This gives (16a) and 
B(z) = ( y / 2 v )  ln(z2+ 1). 

B ( z ) = ( y / v )  ln[4z(l-z)] 

which differs from the desired special case of (16b) by a constant. The constant could 
be removed by changing the phase relation between al(z)  and a2(z). Differentiation 
of this formula gives 

-=* - 
dB d t  P Y y  z I-z ) d z  d t  

which is the desired form of (16c). It seems obvious that we can set /3 + 2y = 0 in (16) 
and transform those equations into a special case of (13). These transformations show 
which solutions of (8) belong to both old and new classes. 

More explicit solutions of the two-state problem will now be obtained by fixing 
the relation between z and t. We start with the case in which the detuning is 

dB/dt  = A 
a constant. The simple case of A = 0, which was mentioned in 0 2, will not be treated 
here. Integration gives 

Use of (136) would give a lower bound or an upper bound for t ;  this means that the 
new class of solutions cannot be used here. But (16b) can be used here, if we assume 
that y, A and /3 + y have the same sign. We find 

t = B(z)/A. 

t = ( y /  v A )  ln[z( 1 - z)-’”/’’]. 

This variable ranges over all real values and is an increasing function of z. The Rabi 
frequency is 

These two equations have the same form as equation (28) of Bambini and Berman. 
See figure 1 in their paper for plots of n(t) .  Unfortunately, it seems impractical to 
eliminate z and write the function n( t )  more explicity, except when /3 = 0, /3 = y or 
p = - y/2. The pulse shapes shown in table 1 are much more explicit than this. 

6. Simple choices for pulse-amplitude function 

For both old and new classes of solutions of the two-state problem, the formal results 
are given in § 4 and appendix 2. The relation between z and t can be chosen to give 
an arbitrary pulse-amplitude function n( t ) .  Seven simple forms for n( t )  are used in 
table 1, where the detuning functions, dB/dt, are listed. In each detuning function, 
the abitrary parameters /3 and y appear; they can be used to vary the form of the 
function as well as its magnitude. The functions z(t)  are given, for each case, in 
table 2. 
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Rosen and Zener [ l ]  set the pulse-amplitude function equal to a multiple of 
sech(vt/T), where T is the time constant. Use of this function gives us the first line 
in table 1. The change of variable used by Rosen and Zener appears as one entry in 
table 2. The positive constant T appears in every entry in our tables. The positive 
constant a, defined by (7) ,  appears in every function Q( t ) ;  it is the dimensionless area 

The hyperbolic-secant pulse shape received much attention in previous work [ 1, 
2, 4, 171 on the two-state problem. We use this pulse-amplitude function with real or 
complex singular points and obtain the two detuning functions shown in figure 1.  The 
growth of the occupation probability of state 2 is shown in figure 2 for the same two 
cases. These occupation probabilities depend on a, the dimensionless area of the 
pulse. The shapes of the curves in figures 1 and 2 could be changed somewhat by 
changing p and y, the detuning parameters. For example, using complex singular 
points and setting y = 0 gives a simple case, with even detuning function, that was 
treated in our previous paper [6]. Using real singular points and setting p = 0 gives 
the model treated by Rosen and Zener. Furthermore, an odd detuning function 
proportional to tanh(vt/T) is obtained from both real and complex singular points; 
this function, which is shown in our previous paper [6], represents the overlap of new 
and old classes of solutions. 

1241. 

Figure 1. Two detuning functions that can accompany the hyperbolic-secant pulse-ampli- 
tude function used by Rosen and Zener. Here 7 = 1.  Full curve: complex singular points, 
p = 2.0 and y = -3.0; broken curve: real singular points, p = -4.0 and y = 3.0. 

Many other pulse-amplitude functions Q ( t )  can be devised and found in a table 
of indefinite integrals. The indefinite integrals are needed to solve (13a) and (16a) 
for z (  t ) .  The functions z(  t )  are used to find explicit detuning functions, such as those 
shown in table 1 .  There is no need to use an even function a(?). But we used only 
even functions, and only real singular points, in our earlier list of examples [6]. 

A Gaussian pulse-amplitude function leads to trigonometric functions of 
;T erf( t / ~ ) .  Since the behaviour of these trigonometric functions as t + fa is not 
quite obvious, two of the detuning functions are plotted in figure 3. A detuning function 
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0.5 

-1 i 

Figure 2. Time-dependent occupation probabilities corresponding to the hyperbolic-secant 
pulse-amplitude function with a = 5.0 and T = 1. We plot I a2I2, the occupation probability 
of state 2. The full and broken curves are calculated for the two detuning functions shown 
in figure 1. 

2 4 

Figure 3. Two detuning functions that can accompany the Gaussian pulse-amplitude 
function with T = 1. Full curve: complex singular points f i  = 18.0 and y = 4.0; broken curve: 
real singular points, p = 5.0 and y = -4.0. 
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proportional to exp( - t 2 /  T ~ )  tan[i.rr erf( t /  T)] is obtained from both real and complex 
singular points. Again, variations in the parameters /3 and y would give detuning 
functions somewhat different from those shown. It would hardly be practical to plot 
graphs showing all the different detuning functions generated by the seven pulse- 
amplitude functions listed in table 1. 

7. Conclusion 

The time-dependent Schrodinger equation for the two-state problem can be solved by 
use of hypergeometric functions and the Riemann-Papperitz differential equation can 
be used to apply the hypergeometric functions effectively. We have reduced the number 
of possibilities by requiring (7) ,  the dimensionless pulse area, to be finite, and by 
considering only cases in which the transition probability can be written in terms of 
trigonometric and hyperbolic functions. This leads to two classes of solutions, one of 
which is new, and an infinite variety of pulse shapes. The numerous simple analytic 
formulae resulting from this approach should be useful in studies of magnetic resonance 
and of the effect of collisions or laser beams on atoms and molecules. 
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Appendix 1. Other formulae for sum of hypergeometric series? 

The assumptions that (7) is finite and that the final occupation probabilities have a 
simple analytic form are used in this paper to reject many solutions that could be 
written in terms of hypergeometric functions. The independent variable in (1 l ) ,  the 
Riemann-Papperitz equation, is z, a non-decreasing function of t ,  the time. As t 
increases from -03 to + 03, z( t )  must run from a singular point to a singular point, 
unless it is feasible to evaluate solutions at a regular point of (1 1). This question of 
feasibility is considered in this appendix. 

If two of the singular points of (1 1) are finite and complex, we may assume that 
they are at *i. If dA/dz is proportional to (z2+1)-”’, we cannot expect (7) to be 
finite. We make dA/dz proportional to (z2+ 1)-’ and this leads to pulse shapes similar 
to (13). Then, we use hypergeometric functions with argument proportional to 
( z  - i ) / (  z + i)  and seek to evalute them in terms of gamma functions at points on the 
real z axis. In fact, they can be so evaluated only at z = 0 and z =CO. We shall use 
the Gaussian formula (12) and Kummer’s formula [31] for 

F ( a , b ;  l + a - b ;  -1). (Al . l )  
This leads to 

a( t )  = dA/dt  = (2a/7r)(z2+ 1)-’(dzldt) (A1.2) 
and 

dB/dt = (2/3z/7r)(z2+ l)-’(dz/dt) (A1.3) 
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where a satisfies (7) and p is an arbitrary parameter. Since (Al . l )  contains fewer 
arbitrary parameters than (12), (A1.3) contains only one arbitrary parameter. As t 
increases from -00 to +00, z increases from -00 to 0 or from 0 to +a. Detailed 
computations, which are feasible, appear to lead to another new class of solutions of 
the two-state problem. 

However, (A1.2) and (A1.3) can be derived from (16) by a change of variable, 
which implies that these solutions belong to the old class of solutions. The derivation 
from (16) depends on whether the positive or negative half of the real z axis represents 
real values of f, the time. To treat the first of these two cases, we set y = 0 in (16c) 
and obtain dB/d t  = (p/.rr)(l -z)-'(dz/dt). Now replace z by z2/(z2+ 1). Then (16a) 
becomes n(t) = (2a/.rr) (sgn z) ( z 2 +  1)-'(dzldt) and (16c) becomes (A1.3). Since z 
is always positive, we have derived the apparently new solutions from (16). In the 
other case, z( t )  is always negative in (A1.2) and (A1.3). Assuming that p + y = 0, (16c) 
becomes dB/dt  = -p(.rrz)-'(dz/df). Now replace z by (z2+ l)-'. Then (16a) becomes 
n(t)  = (2a/.rr)  (-sgn z )  (z2+ 1)-'(dzldt) and (16c) becomes (A1.3). Since z is always 
negative, we have derived the apparently new solutions from (16). 

The purpose of this appendix is to consider use of various formulae for evaluation 
of hypergeometric functions in terms of gamma functions. Formula (12) is the earliest 
and most important of these formulae; see Oberhettinger [29] for a long list. If two 
singular points are at * i, we seek to evaluate the hypergeometric function somewhere 
on the unit circle and are led to consider use of Kummer's formula for (Al.1). If the 
finite singular points are at 0 and 1, we seek to evaluate the hypergeometric function 
at z = t (or elsewhere), but no applicable formula can be found in reference [29]. The 
result is that only (12), the Gaussian formula, is actually used in this paper. 

Appendix 2. Explicit solutions 

The solutions of (8) will be written here in terms of hypergeometric functions. The 
limits of these solutions as t + +a are given below and the absolute squares of these 
limits give (14) and (17). The limits of w appear as (14c) and (17c). The limits of U 

and U, defined by ( 5 ) ,  are given below, but only in those special cases where these 
limits exist. 

The general solutions of (9) and (11) can be written in terms of hypergeometric 
functions. The four constants appearing in separate general solutions of (9a) and (9b) 
can easily be adjusted so that I a, 1 + 1 and a2 + 0 as t + - 00. It is essential to adjust 
these four constants so that (8) is also satisfied. 

The following calculations show that a, and a,, the components ofthe wavefunction, 
do not oscillate indefinitely as t + * 00. Although (2) may lead one to expect this result, 
it is quite different from the behaviour of wavefunctions in the Landau-Zener model 
[8, 91. More precisely, we find that the phase of a ,  is bounded as f + -00. This allows 
us to require a, + 1, a2 + 0 as t + - W. Furthermore, we find that a, and a, approach 
definite limits as t + +a. We can calculate the limits of U and U if and only if B(z), 
given by (13b) or (166), is bounded as t + + 00. 

A2.1. Complex singular points 

Here, z increases from -a to +CO as t increases from -00 to +CO and we use (13). 
Set a = i  and b =  -i in (11) and take the limit as c+00. It is convenient, but not 
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necessary, to refer to the list [32] of 24 solutions of ( l l ) ,  rather than Kummer's list 
[31] of 24 solutions of (10). Equation (13a) requires us to set y = O  in ( l l ) ,  but not 
in (13b); this simplifies the first two of the 24 solutions. Moreover, we find y' = 1 f i y /  T ;  

the upper sign is used for (9a). We have to solve quadratic equations to find the 
remaining parameters in ( 1 1 ) ;  the resulting square roots appear in (15) .  The first two 
of the 24 solutions of (1  1 )  are independent and will be used. We shall see that 

- ( P + i ~ ) / ( 4 m ) - r  

a , = (  - 3 { r ( 2 r ) ( 3  

Z + l  

i Y  - - -r-s;  1-2r;- 
2T 

x [ r (  - z + r + s ) r (  - z + r - s ) ] - '  

+ r( -2r)  - 
[ ( z i ; ) - ( P + i ~ ) / ( 4 ~ ) + r  

and 

where the logarithm of ( z  - i ) / (z+i )  increases from 0 to 2 7 ~ i  as t and z increase from 
-m to +a. When z is large and negative, these formulae give 

a , = 1 +  . . .  
and 

l - i y / v  

+.  a 
z + i  

a2 = 
4(iy-  %-) 
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Terms in z - ~  and 
a, contains no term in z - ' + / ~  . This calculation shows that (8) is satisfied. 

are not shown explicitly here. It is necessary to verify that 

As t +  +CO and z +  +00, 

a, -+ exp( -lip) cosech(y)[exp($y) cos(2ns) -exp( - $ y )  cos(2nr)l 

and 

a2+t ia  exp(?ln2)[r( I-?)], 

x r 1--+r+s r 1- -+r - s  

x r  ( l - - - r+s  iy  ) r ( I--- iy  .-.)]-'. 
[ (  1: ) (  I: ) 

2 n  2n 

These formulae are derived from (12) and they give (14). As z + + 00, B( z )  is bounded 
only if y = 0. Setting y = 0 gives the generalised Rabi solution [6], for which 

U + ap ( a2 + p')- ' [  1 - cos(a' + p2)  'I2] 

U + - a( a'+ p2)-",  sin(a2+ p 2 )  '1' 
and 

W +  - (a2+B2) - ' [P2+a2  C O S ( ~ ~ + P ~ ) ' / ~ ]  

as t +  +00. 

A2.2. Real singular points 

Here, z increases from 0 to 1 as t increases from -00 to +CO and we use (16). Set 
a = 0 and b = 1 in (1 1) and take the limit as c + 00. Then, (16a) gives a' = p' = 0. This 
result puts (1 1) into the form of (10). The hypergeometric series is one solution of 
(10). An independent solution is given by Gauss [26, p 207ff1, by Kummer [31] and 
by standard references [29,32]. 

We shall see that 

a, = F[R - ip/(2n) ,  - R -ip/(2n); f + i y / n ;  z] 

and 

where 

R = ( ~ T ) - ' ( c z * - @ ~ ) ~ / ' .  

Expansion in ascending powers of z gives 

a, = 1 +. . , 
and 

a z 1 / 2 + ( i ~ / = ) + .  a2 = 
(2 y - i n )  
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It is easy to see that the expansion of a,  contains no term in z " ~ - ( " " ~ ) .  This calculation 
shows that (8) is satisfied. 

As t +  +a and z +  1-, 

r ( f  + i y /  .rr)r[f + i( p + y ) /  T ]  

' I +  r[f+ ~+i (p+2y) / (2 . rr ) ] r [ f -~+ i (p+2y) / (2 . rr ) l  

and 

iar(f+iy/ . r r ) r [ t - i (p  + y ) / ~ ]  

2.rrr[l+R-ip/(2.rr)]r[l - R  -i/3/(2.rr)]' a2 + 

These formulae are derived from (12) and they give (17). As z + 1-, B(  z )  is bounded 
only if p + y = 0. If p + y = 0, 

u+ iu+  

as l+ +a. This calculation was omitted from earlier papers [4-61. 

- i m  sech(p) 
r[f + R - i p / ( 2 ~ ) ] r [ f  - R - i p / ( 2 ~ ) ] r [  1 + R + ip/ (h)]r[ 1 - R + i p / ( 2 ~ ) ]  
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